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SIGNIFICANCE AND EXPLANATION

The equations treated in the paper represent a quasilinear generalization

of the elliptic p.d.e. div(IVup-2Vu) = 0, p > 1. Such an equation is

degenerate for IVut close to zero if p > 2 and is singular for

1 < p < 2. It is demonstrated that the weak solutions are continuously

differentiable and the derivatives are H3lder continuous.

These equations arise in the theory of non-Newtonian fluids. In view of

this it is of interest to investigate the local smoothness of the solutions.
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C +  
OCAL REGULARITY OF WEAK SOLUTIONS DEGENERATE ELLIPTIC EQUATIONS

E. DiBenedetto
(1 1

1. Introduction

The main result of this paper is the C1+ 9 nature of local weak solutions of elliptic

equations of the type

(1.1) -div a(x,u,Vu) + b(xu,Vu) - 0 in V'(0)
:- +

where 0 is an open set in HN, N ) 2, a is a map from R2N+ 1 into R and b maps

3t2N 1 into 1.

The point here is that we do not assume uniform ellipticity of the leading part of

(1.1), which is allowed to be degenerate for certain values of IVul. In a precise way we

assume (the sumsation notation is throughout used)

(All au jk • > Y o(lu lllvu l -21gj2; C e R, p > I
u xj

(A2)  lak x Yl(lulllVulp- 2, k,j- 1,2,...,N

(A 3 1 laukxak 1 ' Y (1ul)iVuIP '1 , k,j - 1,2,....N

CA41Ib(x,u,Vu)l 4 Y1I ou olIVul p

The functions Y () and y1(.) are continuous in e+; y0(.) is decreasing and strictly

positive and Y I (*) is increasing.

Thus, the degeneracy of (1.1) is of the same nature as

(1.2) div(jVulP'2 Vu) m 0 in 0'(9), p > 1

moreover (1.2) satisfies (A1]-tA 3 1- Vp > 1.

(1 )Department of Mathematics, Indiana University, Bloomington, IN 47401.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Partially supported by National Science Foundation Grants 48-296-80 NSF-
MCS82-0 2100.
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The C 
+ a  

local regularity of weak solutions of (1.2) for p 0 2 has been

investigated by Uhlenbeck [221, Uralltzeva [23] and Evans [7]. While this paper was in

preparation, Lewis [13] has informed me that he has obtained the same result for the case

1 < p < 2. Lewis proof is quite different with respect to the one we give here.

The fact that (1.2) appears as the Ruler equation of the variational integral

f(u) - JVupdx, p > Ia

under certain side conditions, plays one way or another some role in the arguments of

[13,22,23].

Due to the generality we consider, (1.1) need not be the Ruler equation of a

variational problem.

The proof reflects the following general idea. Consider a ball B around a point

x0 e OP if the set where (1.1) is degenerate is confined in a small portion of B, then

somehow it can be controlled. If conversely JVul is small in a large portion of B,

then it can be compared with the radius of S.

This point of view, originated in 1957 with the work of De Giorgi [51, is now quite

standard in dealing with degenerate (or singular) equations, and is the one that has been

employed in [2,6,7,23). The difference is the technical handling which might give richer

or poorer informations on the solution.

Here we propose a substantially different technical version of this fact which permits

a unitary treatment of the cases I < p < 2 and p ) 2, along with the full quasi-linear

variational structure of (1 1). The proof of the boundedness of I Vul is based on

controlling the growth of IVul in [A2 ]-[A 4] with the oscillation of the solution u.

An advantage of our approach is that it does not require a different analysis for

"degenerate" points and "regular" points. The behaviour of the solution around any point

6 e is analyzed unitarily at once.x0

B By a local weak solution of (1.1) we mean a function u e wc(Q) such that

(1.3) J [f(x,u,Vu).V + b(x,u,Vu),P)dx = 0

for all o e w6 P(); supp 0 C A.
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We will assume throughout that u is locally bounded in Qi. If y (s) ( TI < d,

vs e le, then the local boundedness is implied by Serrin's results [21] if the lower order

. terms Ib(x,u,Vu)l 4 ylVuh
p

-
l , and by the arguments of (121 if lb(x,uVu)l ' TIVuI

a

0 C p - N/I + p).

Let us fix 9' a subdomain of Q such that O C () and let M - ess sup Jul. All

our arguments are local in nature and will be carried over 19', so that we might replace

Yo(Jul) and ylllul) in [AI-[A4 ] with YO B YO(M) Y1 = Y(M).

In order to justify the calculations to follow it is sufficient to have

p2 b
2 Uxix e L C () , ij - 1,2,...,N

Xii 2

This fact would be implied by the assumptions

(B] lb 1 4 TlVulp"I1 lbubx I - TlVul p

modulo an argument involving difference-quotients, modeled on the results of [12] page 270-

277. Here we will assume instead that u can be approximated by smooth solutions of

regularized problems. This choice is motivated by simplicity of exposition and by the

possible applications of our results to compactness arguments. Thus we will assume that

[AS )  The local weak solution u under consideration, can be locally constructed

as the weak W1 'P(K) limit of a net {u ) such that

lu I -C, N e > o, K C Q'

2
U e C (Q), VC > 0 and the u are solutions (in the classical sense) of

(1.4) -div a (x,u ,Vu ) + b (x,u ,Vu ) 0 in 0.
(14 dvaC CXUP C C C C

Here a ,b are regularizations of a and b, such that a (x,u Cu ),
1 1

b (x,u ,Vu ) + +(x,u,Vu), b(x,u,Vu) weakly in L .(n'), + - 1, whenever
C C p p p, 4

u CVuC + u,Vu weakly in L (0') and uniformly in K. The regularizations abC are so

constructed as to satisfy

-3-
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12
[A1 ' k [ + l9u 12] 2 2 e RN, p > i

'-eu jal k [Y+O~ u

v2
1 I Iau I C + IVU.I2 ] 2 kj =1,2...

X.,3
M-1

[A3 ] 1&ku#a ¥ 1 k,j = 1,2, ....,NCux

[A) |  Ibc(x,usYuc)l ( l[c- IVUsI2 ]p / 2

Such an approximation assumption is not restrictive in view of the available existence

theory (see [10,12]).

To stress further this point, in Section 2 we will show that if [I] holds, locally

bounded weak solution of (1.1) are locally unique and that in fact can be approximated as

in [As).

We can now state our main results.

Theorem Is Let u e w1'(Q) A Loc(), p I be a local weak solution of (1.1) under theloc

assumptions [A1]-[A5 ]. Then IVul e Lloc(2) and for every compact K C S', there exists

a constant C. depending only upon 0,ylp,NN and dist(K,aI') such that

Iula, ( CO

Theorem 21 Lot u 10c(Q) n L. (0), p > 1 be a local weak solution of (1.1) under the

assumptions [A1]-[A5). Then x + Vu(x) is locally Hl1der continuous in 2', i.e. for

every compact K C L', there exist constants C1  and a e (0,1), depending only upon

Y0 ,Y 11 p,N,N and dist(K,32'), such that

luxW) - x (y)l (C Ix- ylB x,y e K, i - 1,2-....N

i Cil

Remarks The theorems still hold if b(x,u,Vu) is not homogeneous with respect to IVul.

Let us suppose that b(x,u,Vu) - b0 (x,u,Vu) + sP (or Ib(xuVu)l y1 IVul
p + *). Then

if V (or # respectively) belongs to Ll°c(0), q > p'N, Theorems 1, 2 remain valid.
q

We will carry the proofs for the homogeneous case, and then it will be apparent how to

modify the arguments to include the mentioned non-homogeneous situation.

-4-
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Corollary: Let u e WlP(Q), be a local weak solution oflbc

div(Iulp-2Vu) V ., p > 1p e e Ll°c(Q)
q

q > p'N. Then u e C 1 ().

Remarks: i) Theorem 2 does not hold for p = I as shown by the following

counterexample. The function

UX-. 2 x2 + 1, X2 < 0

-2x 2 + 1, x2 ) 0

-12 2
satisfies div(IvuI Vu) - 0 in the weak sense in the disc D [x I + x2 < However,

the gradient is bounded but discontinuous. Geometrically the equation says that the mean

curvature of each level set of u is zero. Existence for div( Vul Vu) - 0 is related

to functions of least gradient (see [17,20]).

ii) The C +  regularity is the best possible (see (14]). The results of Uhlenbeck [22]( li The loc e la typ s b e

and Ural'tzeva [23] hold also for systems. Because of the generality of (1.1), the C1+ Q

regularity for systems with the structure (AIl-[A4] is not to be expected. Even for the

nondegenerate case (p - 2), the best results available are expressed in terms of "partial

regularity" in the sense of l4orrey [18,8,91.

An investigation of the partial regularity for systems is of interest it falls

however, beyond the scope of this work.

(iii) The equation (1.1) with the degeneracy [AI]-[A 4] has geometrical interest for p ) 2

(see references in (221) and arises in the theory of non-Newtonian fluids both for the

case p > 2 (dilatant fluids) and 1 < p < 2 (pseudo plastic fluids) (1,15,16].

(iv) The results of this paper have a parabolic counterpart. The subject will be treated

in a forthcoming paper.

The theorems will be proved in terms of local equiboundedness and equi-H61der

continuity of the net [Vu 1.

The only estimate which we assume, uniform in z is

*4J IVU,,I'dx (CMK
K

,-
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The statement that a constant Y depends only upon the data, will mean that Y can be

determined only in terms of Yo,Y,,p,N,M and is independent of C. With Y we will

denote a generic positive constant depending only upon the data, which might be different

in different contexts.

The paper is organized as follows. Section 2 contains some remarks on the

approximation assumption [A5 ], along with some preliminary material to be used as we

proceed. Section 3 contains the proof of local boundedness of the gradient, whereas in

Section 4 we show the C regularity for equations with restricted structure
loc

-div a(Vu) - 0

where a satisfies [A]-[A2 ]. Finally, in Section 5 we recover the result for the general

structure (1.1) by making use of the results of Campanato (3,41.

It is a pleasure to acknowledge conversations with W. Ziemer, during the preparation

of the manuscript.
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i J 2. Remarks on local approximations

The remarks of this section reflect a modification of results and proofs of facts

* . collected in [12] for the nondegenerate case.

Assumptions [A1]-[A31 imply that in Q'

To
a(x,u,Vu)-Vu > p IVulp , p > I

(2.1)

SI(x,u,Vu)l 1 - IVulP 1

To prove (2.1) observe that

f: I Y-
"' " ~[aklx'uVu) " akxu0Iu [f ' aklxutVuldt] k

1 k (xutVu)u u dt ; - jVulp

For x. e 0' we let S(R) E (Ix - x0I < R), where R is so small that B(R) C 0'. Also

with KN we denote the measure of the unit sphere in 10, so that meas B(R) - R
.

Consider concentric balls S(R), BCR - OR), a e (0,1) and construct a smooth cqtoff

function x P(x) such that C Z 1 on BWR - OR), supp C C B(R), IVCl 4 (OR)"1  Zn what

follows x + 4(x), will always denote such a cutoff function. In the weak formulation

1.3) select test functions

4 (u - k) exp[A(u - k)]
2

Routine calculations (see (21,121) and a suitable choice of A yield the inequalities

(2.2) IVu - k))IB )  Y(OR)Iu - k)
p, B(R-OR) p,B(R)

where y is a constant depending only upon the data.

Inequalities (2.2) hold for every ball B(R) C Il', every a e (0,1) and every

-4 • k 4 M. By virtue of the results of [121 page 81-90, they imply the local H3lder

continuity of u in Ill. Therefore for every compact K C A' there exist constants C

and 0 e (0,1) depending only upon the data and dist(K,U' ) such that

(2.3) lu(x) - u(y)l 4 Clx - y , (x,y) e K.
I'- 1

If in (2.2) we set 0 - and k = inf u, in view of (2.3) we deduce that
2 8S(R)

4i -7-
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(2.4) f IVulPdx 4 YRNp+8 p
B(R)

for every ball B(R) C K, and for some constant Y depending only upon the data and
dist(K, a' ).

Le=ma 2.1: Let u be a local weak solution of (1.1) with 1 < p ( 2. Then there exists a

constant y depending only upon the data such that for every function e wV'P(B(R))

(2.5) f IVulp 2 dx - YR I IVulp"21VgI 2dx
B(R) B(R)

Proofs The lemma follows from (2.4) via Lemma 1.3 and Lemma 1.4 of [12] page 59-61.

Lso 2.2: Let u be a local weak solution of (1.1) with p ) 2. Then there exists a

constant Y depending only upon the data such that, V9 e ;IP(B()

(2.6) d IVu."&:dx C YR8 f tVulp- 2,V&I2dx
B(R) B(R)

provided that R 0 o /2I C.

Proof: In the weak formulation (2.3) set V - [u - u(x 0)] 2 where x0  is an arbitrary

point of D(R). Using (2.1) we obtain

1, 0  IVulpt 2dx IVulpI[u(x) - u(xo)1 lV&Idx +
B(R) I(R)

+ Y, f IVulPu(x) - u(x0)1t2x"
1B(R)

The lema follows from an application of Cauchy inequality ab • a2 + C -b2

Leimma 2.3 (local uniqueness): Let u1 ,u2 be any two local weak solutions of (1.1), and

assume that [B] holds. Then there exist a number Rg, depending only upon the data such

that if uIl u2 on BB(R), R • R0 , then uI  u2 in B(R).

Proof: Writing the weak formulations for ul and u2 and subtracting, we obtain
,f ([a(x,ul,Vu I a(xu2,Vu21]*Vo + [b(x,u ,VU 1 1 - b(x,u 2,Vu2 )]sPdx 0

B(R)

for all v (B(R)).

Select p - uI - u2 , and observe that

-8-



[ak(x,u, Vu u u
1 1 2# 2 1

f a (x,tu1 + (1 - t)U2 ,tVu1 + (I - t)VU )(u1  U 2 ) (ul u 2 )xdt +

01 a~(x,tu1 + (1 - t)u 2 # tvuI + (1 - t)VU 2 )(u 1 -u 2 )xk(ul u2)d

Y(I ItVU1 + (1 - t)Vu Ip d)IVP1
0 0 2

- (4f I tVu1 + (I1- t)Vu 2 Ipdt)I PIIVPI

Treating similarly the lower order terms, we obtain after standard calculations

+f [Ix~uI + 11I tu 2] 2 VI + 1-td2)u xx(U 2d

) "I ( Y(p) f. + 1  I + tVuuI]v't 2ldx

- Y,(£f Ivu 2 (1 2)uJ-d~ [

D(R) B(R)

We majorize the integral on the right hand side by applying Lemma 2.1 if p e (1,21 and

Lemma 2.2 if p > 2. In either case we obtain the existence of a constant Y depending

only upon the data, such that

I EI~u1 I + IVu21]P
2 1v I12dx R YRO f (Vu I + IVu21 

2 1V 12dx
B(R) 

R( 8)

From this it follows that if YRS < 1, 0 - u1 - U2  0 in B(R).

We are now in the position to construct local approximations to u if [8] holds. Let

+ + C 11
a. and b. be the regularizations of a and b satisfying [A] -[A4 ] and consider the

boundary value problem

(2.7) f-dv a (x,u VuC) + b(x,u ,Vu ) - 0 in B(R)

u - u on aB(R), R 4 R0

In view of (AI C-(A4] , the remarks above, and Theorem 8.7 of [12] page 311, (2.7) has a

unique solution u. e W1 'P(B(R)) such that

(a) U" e C2 (B(R)) n C(Y-'R)"

(b) Iu £I.,B(R)4 M = suplul, yE > 0



An uniform bound for f IVuIlPdx in terms of K and f IVu IPdx, in readily
B(R) B(R)

derived by standard theory (see (10,121) and hence for a subnet (relabeled with

1+a
) u£ + V weakly in Wl'P(B(R)). After we show that u e c 1  we also have u w

and Vur + Vw uniformly on compacts of MCR), and hence passing to the limit in the

integral identities

f ( (xu EVu).V' + b (x,u ,Vue ),)dx- 0

Yi e ;I"P(B(R)), in view of the local uniqueness we obtain (.3).

These remarks prove that it is not restrictive in order to prove our theorem, to work

on the smooth approximations {u introduced in [AS ). Let therefore (u } be a neti£ 
"

satisfying [A 5 1; then considerations analogous to the ones above, imply that fu are

uniformly locally HMlder continuous in R', i.e. for every compact K C 01, there exist

constants C, B e (0,1) depending only upon the data and dist(K,90') such that

lu Cx) - u (y)l I Cx-y i (x,y) e K, ve > 0

Lea 2.4. Let B(R) C 0'. There exists a constant y depending only upon the data such

that for every 9 e OIP|B{I))

f [ + I~u 121 2 12d • 2B f I[i + IVu I2 2 ( y vu i2)e +

R(R) B(R) i- i

+ (C + IVuCI 2 )P/ 2 1VYI2 dx + Y f (E + IVu6l2lp/2t2cdc
(R)

Proof: For notational simplicity we will drop the subscript c and set

w - (E + IVu 12). Consider the integral

I f p/ 2 lVu1242d.
B(R)

and rewrite IVuI2  in the form

N

i-1ii

-10-
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where x0  is any point in B(R). Integrating by parts

I=-f (U(X) - U(Xo)]{wP/2 Au 2 + pw 2 u u u 2 + 2wP/2u dx
0 x x xx x.

B(R) i i

SYR I 2 g2 + ?-1v  + 2w 2 IVlT2)dx c

B(R) i i

2-2 2+ p+2

By taking i = (2yR ) we obtain

f w 2 92. j p/2,V.12 &2dx + C f wp/22dx C
B(R) B(R) R(R)

f w 2 &2 + + 2B w 2 ( Vx1
2 )t2 +

2(R) B(R) i i

+ wp/2 V 2 }dx + f wp/2C2dx

B(R)
The lemma follows.

For a e R set A ,R - (x e B(R)iu(x) > s}; AS,R i B(R)IU(X) < a)

The proof of the following lemma can be found in (5].

Lemma 2.5: Let u e W II(B(R)) and let k,1 be real numbers such that L > k. Then

+ 1- 1
(A - k)[meas Al N RN + + IVuIdx

meas[B(Rl\Ak R ARA
k ,R k,R AL,R

where y is a constant depending only on the dimension N.

"4 -11-
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3. Boundedness of the gradient

We prepare for the proof of Theorem I by establishing some integral inequalities

needed in what follows. The subscript C will be dropped and we set w = (E + JVU1 2 ).

Differentiating formally the approximating equation (1.4) with respect to xi  gives

(3.1) -div(a u + a u + a + A- bx,u,Vu) - 0
u x ix ux I x~ dx.

in P'(Q). The equation holds in the sense of the integral identity

(3.2) f ( u x x + %ux + a j]*V - b(x,u,Vu), x)dx - 0

for all • e ;lq(g) q > I.

In (3.2) select the test functions

- u i (w)C 2

x i

where '(*) is a non-negative smooth function such that n'(w) ) 0, and C is the

standard cutoff function in B(R) and B(R - OR). Adding over i - 1,2,...,N, identities

(3.2) with the indicated choice of 4 and using (A] (A4 1C we have the estimates:

i) f ak u (u nI"w)C 2 + u w n'(w)C2 + 2ax. '(w)¢C]dx
B(R) Uxjxj xxk xi xi

Yo f w 2 I IvuIM Kd + -1 w ,2,( 2d
0BC)dl + 2 IVw2 0(wC dx

i() i S(R)

L- 2

2Y- f w 2 1 1 u u ICTI(w)IVCldxB(Rt) i, xt xi

From now on we will set

B(R) w 2 (1 IVu x1)n ) +" w 2 1V I2 '(2) C 2dx
B(R) i i B(R)

-12-



[ii) BiR taku + ak IUx Wl)c 2 + U x n'(w)c 2 + 2u n(v)C: xdx 4

p+2
2-1, 2~jr 61(R) + y6 - 1-  w 2 En(w) + (1 + 2v)fl(w)]2dx +

B(R)

+ 1 2( + /)-i(wCjV~tdx

B(R)

(iii) ( b(x,u,Vu) -- [u n(w)c ldx C 61(R) +
ax x x(R) i

p+21

+ Y2 6 " 1 f w 2 [nw) + wn'(w)]C;2 dx + 2f v 2 n(vl);IVldx
S(R) S(R)

Collecting these estimates as parts of (3.2) with the choice 6 = Y,/4, we deduce the

existence of a constant y depending only upon the data, such that

(3.3) 1(R) 4 y f v 2 1 u Ijn(wv)CVC1dx +
B(R) ij i £ j

+ v f v 2 I.(w) + (I + /w) 2 ',(w) I 2 dx +
D(R)

+1n(v)CIVCldx + Y f vp/ 2 n(v)ClVldx•
B(R) B(R)

We will make particular choices of R(.). First select n(w) - ws, a ) 0, and estimate

the terms in (3.3) as follows

(e) Y I w 2 , 1 Ux Ux x jI(w)CIV~ldx 4 6 f w 2 (1 IVu x 2 )n(w)c 2dx
B(R) i~j i ij B(R) i

e y 2 6- 1 J wp 2 n(w)lV;12dx
B(R)

" +2+2

4s f w 2 2 dx + 4SRN

B(R)

-13-
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L

(C) I w 2 (vw)IVCldx f 2 C 2d2 + f w 2 I_
(c) B(R) 2(R) B(R)

These remarks in (3.3) yield

(3.4) 1(R) 4 Y(S + 1) f w 2 C2d. + Y f v 2 IVCI 2 dx + GYSc RN
MCR) B(R) N

for a new constant Y depending only upon the data and independent of a and R.

Next in (3.3) we will choose

n(w) - (p/ 2 
- k) + - u.x"wp / 2

- kO), k > I

For simplicity we met vP/ 2 = v 8o that 11(v) = (v - k) , and estimate the parts of (3.3)

as follows

1-2m p-2
: () 2I UUxxlv k)~l ; ,( vI

(d) J w 2 (v ) C I VC ~IIC f j 2 IVlI(v - k)+ CV;I -
B(R) i.i ix i 2(R)

2
1 iV(v - k)+I(v - k)l+12rIdx A f IV(, k)'I C2d, +
P B(R) p 5(R)

+ f11 (v - k)+ IVC1 2dx
D(R)

2 ln(w, + (1 + -)2 (,]. (w, j C 2 k 2 a
B(R) 3(R)

Mf f (wp/2 + v 2 )n(w)CIVC I d Y f wJP+'X(v > k)C2 dx +

R(R) B(R)

+Yf (v- k)•VC
B(R)

Consequently dropping the term involving n1(-) in (R)

-14-



2 2 2 2 2
(3.5) f w w IVwI XtV > k)r dx (C 6 f IV(v - k)+1 .2dx +

B(R) B (R)

+ 1(6) f (v - k)+ IvCI2d + f w-+'x(-, k)C 2d.

M(R) B(R)

Finally we observe that

w 2 w 2 IVw 2x(v > k) C2dx f IV(v - k) 122,dx
(R) P (R)

and hence for * we see that there exists a constant Y depending only on the data
2

and independent of R and k such that

(3.6) f IVv - k) 1212dx ( y f Cv - k)+2 12d, +
S(R) SR)

+ Y f Pw'x(v > k)42dx, k ) I .
S(R)

Inequalities (3.4) and (3.6) will be employed to prove the local boundedness of the

gradient.

Proposition 3.1: IVu I e z C(M), Vq e [,) uniformly in C.
z q s

Proof: By virtue of Lemma 2.4 applied with F = w 2C we have

f 2 C 2dx C YR( s)21(R) + f(R11 + 1) f w 2 ()dx+ iVC12ld.
B(R) B(R)

Combining this with (3.4), for a new constant y we have

p+ 2+ s J2±2+ 2s
(3.7) w 2 C

2
dx I YRI011 + s)3 f w 2 C 2dx +

B(R) BCR)

p+ 28

+ 1(1+ 8) 2 w 2 [C V .+YI+ N
B(R)

-15-
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Let now (R be a decreasing sequence of numbers such that

= (2y)- 1" 5  Re - R0(I + s) "3/ ,

and consider the concentric balls B(Ra) and D(R+ 1 ).

If x W Cx) is a standard cutoff function in B(Rs ) which equals one in B(R8 I

we have V 21 + 2(8/ and therefore (3.7) implies

p+2+2s p+29

(3.8) f w 2 d 4,
2 (a + 2) 1 0 / - f w 2  dx + y(I + a) 2 ,%R ,

BIR ) 0B(R)

where y is independent of R0  and s.

Iterating over a, starting from s - 0, the proposition follows.

Remark: Inequalities (3.9) imply that a local bound for f lwJqdx over a compact
K'

K' C 2' is obtained only in terms of the data and f wp/2dx for K' C K.

lbc K
Proposition 3.2: IVU.1 e Lo (0), and for a compact K' C 0' the quantity *Vu I -K9 is

estimated only in terms of IVulpK for a compact K containing K'.

Proof: Consider inequalities (3.6) and estimate the last integral as follows

2-NKW-41 - 2

f wp+1x(v > k)dx -C[R w 2-N xj [men
B(R) (e)

where K e (o, -] and +, (x e ,(R)jv(x) > k).

If 0" is a subdomain of 0', by virtue of proposition 3.1, the quantity

2-NK

"[ N(Pi)/
2- 1dx] N

is bounded uniformly in £ by a constant y depending only upon the data and

dist(Q",3£P). Therefore if B(R) C 0" from (3.6) we deduce

f IV(v - k) 2dx ,(OR)
2 f (v k- +2 dx + y"eas , +

(R-OR) B(R) hkR

-16-
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These inequalities are valid for all S(R) C 11" and all a 0 (011). The proposition now

follows from Loa (5.4) of [121 page 76.

We conclude this section by giving a simple proof of the boundedness of the qradient

for equations with restricted structure

(3.9) -div aC(Vu) O f, vE ) 0

where 2

k 2 2

kez k: y0Eoc + iVu12 2 i 12

xj

ls CU I . Y1 le + IVU 2 p >
xj

Equations with this structure include div( VulP-2Vu) 0, p > 1.

Even though the gradient estimate is a particular case of Propositions 3.1 and 3.2,

the simple constant-dependence typical of (3.9) will be needed in what follows. in

particular in Proposition 3.1 use was made (via Leuma 2.4) of the Hnlder continuity of

u, whereas for (3.9) is our goal to find a bound for IVulM, K independent of the local

properties of u.

Provosition 3.31 Let u5 be a local weak solution of (3.9) in 0. For every ball

B(R) C 0 and every 0 < 1 we have,

11~C + IVu 1211 p /2  4 [c IVu 2lP/2dx, VC ; 0
C -,B(R-6R) B(R) C3(R)

where y depends upon the data and 6 only and is independent of R.

Proof% Taking the xi derivative of (3.9) in the weak sense we have (the subscript £ is

dropped)

(3.10) f a ux x s x - 0 0 ' e Wt'P(B(R))
B(R) u Xi Xk

a

Set p - uwx w a > 0, where w ( C + and C is the standard cutoff function

in B(R) and B(R - OR). Standard calculation yield, for y independent of a,

f lvw 4 1 Y w 2 V2d.
B(R) B(R)

-17-
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Setting

v .-- / 4, + _
p

the above can be rewritten as

i.S IV,,l2C2 d , Y f" (,e ) 21V12dx•

S(R) S(R)

Since a In an arbitrary positive number, 0 is an arbitrary number larger than 1. The

Moser iteration technique (191 now gives

UVI 2  'C Y(6)RN fj~
S(R-dR) D(R)

for any 0 < 6 < 1. The Proposition is proved.

This proof applied to diYv(VujIr2Vu) = 0 seems more direct than the ones in

(7.13,231.

-18-



4. Iflder continuity of the gradient

We start by proving that local weak solutions of

-div aC(Vu) - 0

are C (0). Here a satisfy [AI ]  2 and the equation for the component of

Vu is viewed in the weak sense (3.10). For k e R in (3.10) set

,p x

to obtain

12-2 22yL-2d2
(4.1) w 2 IV( - k) IC2 C w 2 (u _ k) i C 2

S(R) B(R) i

for Y depending only upon the data.

For the case I < p < 2 another inequality will be needed.

In (3.10) set

P - [(Mu I + I)p-2u~ - kJ-C2 1 k e ve~~~~n " [lxil +  l xi '2 • + ,

where n is a small positive number which will be let + 0.

Let us set

- (luxI +  'n)p2u = lux lP-2 X
xi i i i

and notice that

(-IIuxl+ nlp-2X(*n < k] 4 a Vn 4 (lUx I + nl)p2 X[n < k]
(- l)(huxi I au X n ki ' (I ) 2  i4,(

i

Setting A (ln) = (x B(R)I* k) and Ak - xe B(R)I# < k) from (3.10) with the
k,R 11 kR

indicated choice of test function we have

(4.2) Y0 w 2 2VUxi12(luxI + n)p-2C 2 dx -

f-Ak R(T)i i
-,-

IC 2y1 f w 2 lVUxI (*I - k)'CIV¢Idx
B(R) i

Notice that

-19-
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VUx 112OU x I + n) P-2 = I4 vlux I + n)P/ 2 2

and that if n < c

w2 IVu I IV(lu I + I) I
X, p xi

Therefore from (4.2) it follows that

p2
v 2 IV(lu x I + q)J 2 2 dx - Y k ) - K)- 21Vc12

Ak, (n ) i B (R)

Letting l + 0 and setting

v - iUx lp/2 sign uxi

the above gives

(4.3) w v2 IV(v- k2(p-1)) 2 I I(* k) -12ivd

(R) B(R)

Inequalities (4.3) hold for every ball B(R) C 0' and every k e Be .

Proposition 4.1: Let x0 e 0' and let R be so small that B(2R) C Q'. Set

-. max sup I ux I
2 li4N 8(2R) i

There exists a number co depending upon the data but independent of E,R,A., such that if

for some 1 l i( N

meas(x e B(R)luxi W < coo

then

ux (x) , Vx B(R)

Analogously if

Meas(x e B(21)Iu (x) > -A) 4 C0 RN

then

ux(x) - Vx e B(R)
4'

-20-
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Prooft: Zither 2 or£ < A2 in the first case, recalling that

w (C + IVu 2 ) + + 2 on B(p), VO 4 2R, from inequalities (4.1) written for the

ball B(p) C 0' we have,. 2€ a 2
" (4.4) 2 d1Ux - k)-Y ' Y f (u - k)- IVC12dx

B(P) B(P)

for every k 4 X and for a new constant Y depending only upon the data.

In the second case we consider inequalities (4.1) for p ; 2 written for (ux - k)-,

k ( ) on the balls B(P), p 4 2R, and estimate the left hand side from below as follows

12
f w 2 iVUx12Xl(ux < k) •2dx lux lp 2lVU I 2X(ux < k)C2 dx
B(P) i i B(P) i i i

='2 f(o m~uxP2 2Xluxi 
< klC dx"

p B(P) i, i

Setting

v - gUxi p/ 2 sign Uxi* above gives

p2 2
f w 2 IVU x2(u,, < k)2 , I(v - h)-I C2d
B(p) i i p 3(P)

for every h 4 h0 -)Yp/ 2 . Therefore, recalling the definition of I, if x + C(x) is the

standard cutoff function in B(P), B(P - Op) 0 e (0,1). we have from (4.1) and p Z 2
(.5) I IV(v h l 2 -2

5- dx C Yh (OP)2 Emeas Ahp]
;"B(P-O) 0),

for a new constant Y depending only upon the data and independent of c,p,o,h. We have

also set

) ,p E {x e B(P)lv(x) < h}

For the case 1 < p < 2, from (4.3) we deduce VP 4 2R

_ _ 2

((N + 1)] p - 2 f IV(v - k2 ( - 1 ) ) I 2d2 4 Y f (Iux i lp-2.xi k]- 2 1VC1 2 dx
B(P) BIP)

-21-
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o that if we choose k ( and denote with h any number smaller than a2 and

h0 - Ap / 2, we will have (4.5) for a new constant y independent of c,p,a,h. Hence (4.5)

holds both for the case p ) 2 and I < p ( 2.

We will prove the proposition for the case £ ( )?, i.e. in the case (4.5) (valid

Vp > 1) hold. Then it will be clear how to achieve the proof in the (simpler) case when

(4.4) are verified.

Inequalities (4.5) are verified Vo e (0,1), VP < 2R and every choice of

h C h0 h Ap / 2 . For n > 0 integer, consider the balls B(Pn), B(p) where

Pn R+ - ''
2 n

and construct smooth cutoff functions x W n(X) such that (X) on

B(P n+1)I supp Cn B(Pn ) IVft I ' (pn - pn+1 )' 1 • 2n+)R- "

We will use (4.5) over the pair of bells B(pn) and a(pn) for the sequence of
n+i n

decreasing levels

hn ho - H ( - _ sup (v-h 0 )4 2 n  B(2R)

Applying Lema 2.5 to the function u - -v for the levels It -hn+1. k -hn over

B(pn I ) we have

N-1 N

[eas N (2 R )N I dx

2 n~'pn ~ mes [B~n~l A~hn'pn41 A;n' 9 n+l A n+l'pn+i

By virtue of the assumption of the proposition

mes 2R-0 2 N

NN

if we choose co C 24"

In view of this, setting

Pn s eas A hnp
-2 n-

-22-
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the above implies (for a new constant Y depending only upon the data)

N-I
V N 4 y2n f Vv Idx [f IV(v-h n- 2dxI"/2 [,n,1/2

y, - H Bnp )+ )

hn"Pn+1 n+1'Pn+l

From (4.5)

-2 2n+2
IV(v- hn) 

2B(P n+1 R

so that

N-I--1  22 h0

(4.6) 146 n+1  R 2 H •P

We observe that if H < 2 then

,2SUP (v - hO) = sup U / P 2 sign u 2B(R) BOW2R)X

i.e. Ux ) 22/pA > * Vx e B(2R).
S1 4

Therefore we may assume H ) h0 . Dividing both the sides of (4.6) by RN , and setting

nV n R N

we have in dimensionless form

I 2N4

Vn+l 4 Yb n v n N-1 b= 2'-

for a new y dependent only upon the data.

From these recursion inequalities it follows from Lemma 4.7 of [12] page 66, that

there exists a number co  depending only on y and b such that if v0 4 c., then

V n 0 as n + -. Consequently ifn

meas{x e 8(2R)Iuxi (X) < A) 4 coRNXi L

then

-23-



meas(x e BlR)IU ix) < 2p = 0 i.e.
2 2/

Us( (x) max sup lux ()l, vx e B(R)
ljQN B(2R)

Suppose nov that the assumptions of Proposition 5.1 fail. Then for all i - 1,2,...,N we

have

(4.7) meas{x e B(2R)Uxi(x) x. A) ( - c0 Rt and
(4.8) meas(x e B(2R)Iux (x) < -A) < (1 - c0 )KRN

Set

2A - u(2R) - max sup luxu(x)l
141(N B(2R)

and observe that (4.7)-(4.8) are still verified if we replace A with a larger number. We

will use (4.7)-(4.8) with A replaced by (1 - 1_-)2R), for s e v.

Proposition 4.2: Let (4.7)-(4.8) hold V I ( i I N. There exists a number So e (0,1)

depending only upon the data and independent of X,C,R such that

Cp(./2) - max sup Iu x I -C 80 iC2R) 8 0 ax sup I UX,
1(i(N B(R/2) i 1iN B(2R)

Proof: Suppose (4.7) holds and consider inequalities (4.4), written for

(Uxi - ( - -)IA(2R))+, S e a, over bells B(p), p C 2R. Since the integrals are extended

over the set where us, is larger than (I - -)--1 , we have on this set

I j(2R) p 2 4 w - + IVU 12  ( 2CN) 2 *(2R)

Consequently (4.4) can be rewritten (for all p ) 1)

(4.9) f IVlux - 0 - I) I+1 dx 9 ¥Cp)" 2 f (ux - (I -12 - )+ 2 dx
B(P-Op) 2a B(P) i 2

where we have set P - UC2R) for notational simplicity.

Lemma 4.1: For every 80 (0,1), there exists a. e 8 such that

meas(x e BCR)lUx Cx) > (I -i0)PlR)) 1. R N
a 0i 2

-24-



a+

1

Proof of lemma 4.1: We majorize (u x(x) - (I - -)u) by P/2 and write (4.9) for
1

0 2R and 0 to obtain

(4.10) f IV(ux - (1 - -)j)+l I YnLR - 'KNRN

S(R) 2s 2

for a new constant Y. Apply Lemma 2.5 to the function u x(.) for the levels

S- - 2(+1) - I - 2-7% and notice that by virtue of (4.7)

meas(B(R)\AeR) ) cORN

Then we have
2-(8+1) e. + IRr R % v dx'

A,R c0  + +
Ak

' 4"

O CR ) IV(Ux (1 - 2")11 4 .1x'/2me.s +"  +" V/2-- " S() X k, R %.I "

Squaring both the sides, using (4.10) and dividing by (2"(&+)&I) 2  
gives

+a ~2 C YR~mas+ +
[mes A+ 1 1 [ a ,R\AR)P- 2- 1

We add over a - 1.2....,s 0 - I to obtain

(so 2)4neas A
+  1 (K R N)

2

V- 0 CR

20

where Y depends only upon the data. To prove the lema we have only to choose so so

large that

Se2
CS 0 - 2) 0

Lemma 4.2: Let inequalities (4.9) hold VP ( 2R. There exist a number 80 such that if

for some s o e u
meas{x e BR)uxi(x) 

> P - 20 ) < RN

i'| then
meas{x e S(R/2)lu (x) > U - 2 -U - H) - 0

-25-



whore

N=Sup (u x(x) (i -20 gAW,
9(2R) i

Proof of Lema 4.2, The lma in proved essentially in the same way as Proposition 5.1.

We leave to the reader the few modifications needed.

Proof of Proposition 4.2 (concluded): Fix 8 as in Lema 4.2 and choose s

consequently by the technique indicated in Lema 4.1. Lissa 4.2 gives then

sup u (x)< -. m !H- i - pis w2

D(/2) '12 2 2 a0 2 a0 +

starting now from (4.8) by the same arguments we arrive at

inf u (x) )o-601

S(R/2) 'i

Since (4.7)-(4.8) both hold V 1 4 i C N the conclusion follows.

1+R1Proposition 4.3t The solution of -div aC(Yu C 0 are C lc(0), uniformly in c, and

for every ball B(R) C 2 there exist constants Y and ni e (0,A) depending only upon the

data and dist(30t),aO) such that

B(p) ix

for every ball B(p) concentric with S(R), p < R.

Proofz Suppose the assumptions of Proposition 4.1 are verified. Then for some i either

uX (x) > I P2R) Vx e B(R)

or

ux (x) <--ia( R) VX efB(R)
Xi

In either case

p23,2 1)2 L,2 Yx 3R.
PO) )p2R 2 4 ( ) 2R) 2 * eSR

Therefore writing (4.4) over balls 3(p), p C R for all i - ,2,...,W and all levels

-26-



L, .

k we have (Vp > 1)

2 2
(4.11) f IV (u -k)± I dx Y(OD) 2  (u k)~ dxxx

B(P-OP) B (R) i

for a new constant y depending upon the data and independent of CP,k. These

inequalities imply, with the aid of the results of [121 page 81-90 that there exist a

constant 6 e (0,1) depending only upon the data, such that for all i 1,2,...,N

osc u (x) S6 osc u

B(R/2) xi B(2) xi

If we set VP 2R

(p) = max osc u

1iN B(P) x

the above implies

(4.12) (a(R/2) 6 (R)

If the assumptions of Proposition 4.1 fail then for all i - 1,2,...,N we have that

both (4.7)-(4.8) are verified. Proposition 4.2 then gives the existence of So depending

only on the data such that

(4.13) P(R/2) ' 60P(2R)

Fix some R 0 such that B(R 0 ) C A' and consider the sequence of radii Rn - R/22n

n = 0,1,... and balls B(Rn) all concentric and shrinking. The proof shows that if for

some n0  the 2hypothesis of Proposition 4.1 are verified, then for all n > no, we can

estimate w 2 from above and below in terms of P(R ) and hence in B(Rn) Vn > no the

equation behaves like a non-degenerate elliptic equation. From (4.11) then it follows that

(4.12) holds Vn > no . Consequently we can assert that there exist no e N such that

(4.13) holds V 0 r n • no  and (4.12) holds for all n > no, n e W.

The proof of Proposition 4.3 now follows from a standard modification of Lemma 4.8 of

(121 page 66-67.
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5. Proof of Theorem 2

Let u be solution f (1.4) in 0 for c > 0 arbitrary but fixed. By the remarks

of Section 2, u is H31der continuous in W' with constants y and 5 depending upon

the data, dist(OlaQ) but independent of C.

Let us fix 00 a subdomain of Q compactly contained in A'. By virtue of the

results of Section 3

for Y depending on dist(OA,32') and the data. Consequently the u6  are equi-Lipechitz

continuous in QA.

We want to prove that u¢ 6 CI +  around any point x0 e ON, uniformly in c. Let

xe e be fixed, choose R so small that MCR) M (Ix - x0 1 < R) C 0", and for

w6 aL((R)), set

RO sea* IR(R) S(R) w(x)dx3(R)

12 C ) 0 is fixed we will write u instead of u.. Consider the problem

(5.1) -div a (xouR(xo),Vv) - 0 in 5(R){ i u on 39(R)

where R is so small for the Lama of local uniqueness to hold.

Lema 5.1s Problem (5.1) ham a unique solution v e C2 (B(R)) n C((R)). moreover

M() inf u C v(x) C sup u Vx e 3(R)
3m(n) M3(R)

(ii) osc v 4 YR

(iii) va e (0,1), there exist a constant Y(6) such that

IVvI p  C y(6) f IVvjPdx
. -,S(R-6R) R S(R)-. n(R)

the constants y,S,Y(8) do not depend upon c.

Proof: The statement of existence is classical (10,12].

To prove Mi) consider (5.1) written in the weak form

(5.2) f a (x0,uRx0),Vv).Vdx 0, vo e W*,P(B(R))
B(R)

-28-
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and select - (v - sup u)
+ 

6 W'P(B(R)). Using (2.1) we deduce
M8(R)

2
"o f te + iVv, 2 ] 2 IV(v - sup u) I dx 4 0

I(R) B(R)

The statement about the "inf" is proved analogously. As a consequence

osc v - max v - fin v sup u - inf u 4 oc u.
B(R) B(R) B(R) 38(R) 3B(R) B(R)

Since ue are equi-Lipschitz in 110, (11) follows. Statement (iii) is a consequence of

Proposition 3.3.

Let us write (.4) in the weak form for test functions w e iV'p(B(R)) and subtract

(5.2) from it. Dropping the subscript e we obtain

-+
(5.3) f [a(x,u,Yu) - *A(x0 fuR x ),Vv)JYVodx +

B(R)

+ f b(x,u,Vu)idx = o vo e ;w1 p'(CR)).
B(R)

Coosing u - v e ;IP(B(R)) we have

[a(xu,Vu) - a(XOUR(xO),Vv).V' -

. I L tx + C1 - t)x0,tu + (I - t)uR(x,),tVu + (1 - t)Vv)dt.Vi
0

~1
f a k  (tx + 1 - t)x0 ,tu + 1 - t)uRCx ),tVu + (1 - t)Vv)dt(u - v) CU - v) +0-.. 0 "xj

+ f ak(tx + (I - t)x0 ,tu + (1 - t)u(x0),tgu + 1 - t)Vv)dt(u - uR(xO))(u - v) +

:ii 1

+ f kl tx + (I - t)x o tu + (1 - t)u%(x ),tVu + (1 - t)Vv)dtlx - x0 ) Cu - v)
0 0

'y 0f (C + ItVu + (I - t)VvIl 2 IV(u - v)I 2 dt -

0

-Y I Et + ItVu + (1 - t)Vv 2 1 2 [lu - U(x 0 )I + Ix- x0 11IV(u- v)Idt
0
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Therefore (5.3) implies for all p > I

"' 1-2
(54) f~ e+I'u2  2 2 2

(5.4) e + IVul2 + IVv ] IV(u - v)I 4
3(R)

4 Y f [e + iVul 2 + iVvi 2 2 (2lu- uR(Xo)I + Ix- xollVlu v)ldx +
(R)

+ Y I Ib(xu,Vu)Iu - vidx
S(R)

Applying Lema 5.1, and denoting with i an arbitrary point of aB(R) we have Wx e S(R)

Iu(x) - v(x)I 4 iu(x) - u(i)l + Iv(x) - v(i)l 4 ouc u + oac v 4 I.
3(R) S(R)

Moreover, for the lover order terms recalling (A41 a and Theorem I

b(x,u,Vu)lu(x) - v(x)i 4 YR

and since u¢ are equi-Lipachitz in 00

lu(x) - u-(xo)t 4 YR

Finally using Cauchy inequality ab < a2 + I-lb2 on the first integral on the right hand

side of (5.4) we deduce that for a now constant y depending only upon the data and

independent of R and C

(5.5) f [ +  VulI2  ] 2 IV(u - v)I2dx 4 ye +
B(R)

+ YR J (C + lquI2 + Vv,2jp/2dx

(R)

Lass 5.2: (i) f jVvIp -; yR.

3(R)

(ii) v6 e (0,1), ayC8) independent of C, such that

1 .3 C (R-$R) 'Y'

Proof: A straightforward calculation from (5.5) gives

I V IJvPdx 4 YRN+ ' * Y(R + 1) f tVuj
P dx + YR f ijvIP dx

(R) D(R) 3(R)

-30-
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, .. , i .. . . . . . . . | I I I I -I . .! -. -i . .

for a new y independent of R and c. Since R can be chosen so that yR < , by

virtue of Theorem I

I IVvIpdx - YRN
B(R)

Statement (ii) follows from (M) and (iii) of Lemma 5.1.

Lemma 5.3: For every 6 e (0,1), there exist a constant y(6) independent of R and C

such that

(5.6) f IV(u - v)2 dx 4 y(8)RN + c , V 0 < p ( R - 6R
B(P)

where

0 = hin{1, )
p

Proof: By Lemma 5.2, (5.5) implies Vp > 1

1-2
(5.7) J [ + IVuI 2 + IVv2 2 IV(u- v)I 2dx 4 YRN+ 1

B(R)

for y independent of R and e.

If p ) 2 we have

2 2

f IV(u - v)I2dx 4Cf IV(u - v)IPdx)p(NRN) p
B(R) B(R)

p -2 _ p 2 ( + I) _
4 2(f [ + IVul

2 + iVvl 2 } 2 IV(u - v)12)P( R N ) P  
4 7R P

S(R)

if I < p < 2, for a e (0,1) fixed we have from (5.5)

f IV(u - v)1 2 dx 4 y[1 + IVulp IV- p  RN+I
B(R-Ia) ,BR--R) 4 *,B(R-6R)

Therefore by (ii) of Lemma 5.2, inequality (5.6) follows.

we fix 6 - so that V 0 < p <
2 2

(5.8) f IVlu - v) 2 dx C Y N+  .

B(p)
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Proof of Theorem 2 (concluded)s We have

(5.9) f IVu - (Vu) P(x )12dx ( f IVu - (Vv) P(x 0 ) 2 dx I
(P) p(P)

4i• f IVu - Vv,2 + f IVv - (Vv) (x )1I d.
B(p) B(P) p 0

By virtue of Proposition 4.3, x' Vv(x) is H6lder continuous in B(R/4) with constants

Y and n e (0,1) depending only upon the data and IVvI.,B(R/ 2 ). The latter quantity is

estimated by (ii) of Lema 5.2, and therefore we conclude that there exist constants Y,n

depending only upon the data such that

(5.10) 1 iV- (Vv) P(x0 dx C R 0 < p

Using (5.8) and these remarks in (5.9) we have

I IVu - (Vu) (x0 ) I- [O() + RN+a]
BP(p)

for all 0 < p <2 Let 8,4 e (0,1) be defined by

""(5.11) 0 - ,lo a

4

iN + 24 N + 2n + a

!.and in (5.10) choose P R This gives

'(N+ a) f Ivu - (Vu)P(xo)l
24x ( '

SO)

for a constant Y independent of P and F.

From a result of Campanato 13] (see also [4]) it follows that x " VuE is

locally HI3lder continuous in O" with exponent 0, uniformly in C.

* Remark% The relations in (5.11) link the estimated Hlder exponent of x * Vu, with n,

the H3lder exponent of Vv in (5.1) "with constant coefficients", with p (via Lemma

5.3), and with the dimension N.
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